- 1. Principles of gas filled detectors and their use in day to day Nuclear medicine practice.
- 2. Neutron Activation Analysis.
- 3. Interaction of radiation with matter and their utility in NM applicators.
- 4. Principles of radionuclide generator and elucidate upon secular & transient equilibrium.
- 5. What are radiation dose limits for occupational & general public?

 Describe significance.
- 6. TLD-Personal Monitoring.
- 7. Derive relationship between decay constant and half life.
- 8. Nal symporters.
- 9. Quality control in a RIA Lab.
- 10. Role of attenuation correction in myocardial perfusion imaging.

- Differentiate radiochemical from radio pharmaceutical .Explain mechanism of localization of radio-pharmaceuticals.
- 2. Lymphoscintigraphy
- 3. What is a collimator? Enumerate upon their significance and clinical application.
- 4. Non-fluorinated PET radio-pharmaceuticals.
- 5. Fluorescent scanning.
- 6. Heliobacter pylori breath test.
- 7. Recent advances in radionuclide therapy.
- 8. Nuclear medicine procedures in surgical emergencies.
- 9. Radioactive waste disposal in a hospital setting.
- 10. Radionuclide imaging in evaluation of epilepsy.

- 1. Infection imaging with references to AIDS
- Algorythmic evaluation of a solitary thyroid nodule and subsequent management.
- 3. Techniques in localization of parathyroid pathology.
- 4. Stress techniques in the evaluation of CAD.
- 5. Thyroiditis.
- 6. Justify: management of cancer is multidisciplinary.
- 7. Gastro-esophageal transit time: radionuclide techniques, significance and utility.
- 8. Importance of co registration.
- 9. Scintimammography and significance of sentinel lymph node evaluation.
- 10. FDG PET-CT in lymphoma.

- What collimator would you select for the given procedure and explain why a) I¹³¹ Uptake b) Tear duct scintigraphy
- 2. Use or significance of a) TOF b) Slip Ring.
- 3. Poisonn & Gausian distribution.
- 4. ROC Analysis
- 5. Principle of GM Counter and Importance of quencher.
- 6. What is r ray constant and calculate exposures rate for 100mg I¹³¹ at a distance of 0.5m
- 7. Given a chance to commission a "Nuclear Medicine" Deptt of today-How will you go about it in India?
- 8. Importance of crystals for PET. Which one you would select and why?
- 9. Importance of HVL & TVL with example.
- 10. Management of nuclear accident in a Nuclear Medicine Department

- 1. Methods to obtain beta dosimeter of a radionuclide
- 2. Relation between CET and RBE and its relevance
- 3. Dose limits prescribed by AERB AND ICRP
- 4 Biological effects of radiations
- Describe in detail the method to ascertain critical organ of a new radiopharmaceutical
- 6 Dose response curve
- 7 Factors affecting the outcome of any radiation therapy
- 8 Monitoring and preventive practices in a PET-Cyclotron facility for radiation exposure
- 9 Radio protectors examples, mode of action and their applications
- 10 Radiosensitzer example, mode of action and their applications

- 1. The mechanisms of localization of radiopharmaceuticals
- 2. Generator produced radionuclides
- 3. Physical properties of technetium 99m
- 4 Radionuclide used in therapy of tumors
- 5 Iodination of protein
- 6 Labeling methods of Red blood cells
- 7 Quality control of radiopharmaceuticals
- 8 Production of 18 F flurodeoxy glucose
- 9 Preparation of Tc-99 mm MIBI
- 10 Anatomy & physiology of kidney

- 1. Indications for bone scan
- 2. Flare phenomenon
- 3. Hyperparathyroidism Tc 99m MIBI imaging
- 4 Cerebral perfusion SPECT study –procedure for Tc99m HMPAO or Tc 99m ECD
- 5 Drugs causing decreased uptake of radioactive iodine in thyroid gland
- 6 Principle of PET imaging with F18 FDG
- 7 Myocardial perfusion imaging with Tc 99m MIBI SPECT acquisition and reconstruction parameters
- 8 Modified PIOPED criteria for pulmonary embolism diagnosis-high and intermediate probability
- 9 Tc 99m Red Blood cell scan for gastrointestinal bleeding protocol
- 10 Dynamic renal scintigraphy with Tc 99m DTPA and GFR calculation

- 1. Working of a nuclear reactor
- 2. Types of distribution and its relevance in statistical analysis
- 3. Chi-square test
- 4 Types of collimator and their characteristics
- Practical utilities of various types of radiation detector devices used in nuclear medicine
- 6 Interaction of radiation with mater give examples of each type in practice
- Waste management in a nuclear medicine department
- 8 How would you plan management of a nuclear accident in a reactor as a nuclear medicine physician
- 9 Salient criteria in selecting a workstation for a nuclear medicine department
- 10 Types of PET detectors their merits and limitations

- 1. Radioactive Waste Disposal.
- 2. The Procedures employed in minimizing radiation hazards.
- 3. Radiation Hormesis.
- 4. The principles of PET Imaging.
- 5. Personal Monitoring.
- 6. The Interaction of radiation with matter.
- 7. Neutron Monitors.
- 8. Oxygen Enhancement Ratio.
- 9. Auto Radiography.
- 10. Apoptosis Imaging.

- 1. Characteristics of radio nuclides for bone pain palliation.
- 2. Quality control of radiopharmaceuticals.
- 3. Radiopharmaceuticals for SPECT brain imaging.
- 4. Give an account of non-fluorinated PET radiopharmaceuticals.
- 5. Methods and usefulness of in-vivo labeling of red blood cells.
- 6. Role of radiolabelled peptides in diagnosis and therapy.
- 7. Tracers in use for myocardial perfusion scintigraphy.
- 8. Radiopharmaceuticals used for liver imaging.
- 9. Radiopharmaceuticals in diagnosis and follow up of neuroendocrine disorders.
- 10. Advantages and disadvantages of Mo99-Tc99m generator systems.

- 1. Clinical application of Non-FDG Scintigraphy.
- 2. Radionuclide procedures for Organ Transplant Assessment.
- 3. Assessment of infectious bone lesion with nuclear techniques.
- 4. Clinical impact of co-registration imaging.
- 5. Work-up, treatment of thyrotoxic pregnant lady.
- 6. PIOPED criterion for pulmonary embolism and its drawbacks.
- 7. Radionuclide techniques for suspected breast malignancy.
- 8. Scope of nuclear techniques in neonatal hyperbilirubinemia.
- 9. Nuclear Medicine in management of patient of epilepsy.
- 10. Palliation of bone pain with radionuclides.

- 1. Generator produced PET Tracers and their application. Briefly mention about the basic principles of concentration of radiotracer.
- 2. Fan Beam Collimator.
- 3. Specific Absorbed Fraction.
- 4. HVL and TVL of Radiation Shield.
- 5. Quenching in GM Counter.
- 6. Linear Energy Transfer.
- 7. Derive equation of radioactive decay. Define decay constant; Half Life. Calculate the mass of ICi of carrier free lodine –131.
- 8. Describe transient and secular equilibrium of radionuclides. Illustrate with a routinely used generator system.